

REFRACTORY MATERIALS CHALLENGES IN SODALIME GLASS FEEDERS

AIGMF, October 2019 Frederic Pomar Saint Gobain SEFPRO Marketing Director

GLASS, ALL TYPE OF GLASS, ONLY GLASS

- Feeder: deliver glass to the spout
 right temperature (viscosity)
 high homogeneity and stability (temperature, composition..)
 allow adaptation / flexibility with fast response time
 high energy efficiency
- Feeder refractories
 No contamination for suitable glass quality
 Stable performance thru the entire campaign life

Feeder: deliver glass to the spout
 right temperature (viscosity)
 high homogeneity and stability (temperature, composition..)
 allow adaptation / flexibility with fast response time
 high energy efficiency

Feeder refractories

No contamination for suitable glass quality

Stable performance thru the entire campaign life

SUPERSTRUCTURE

GLASS CONTACT

Optimized selection ?

REFRACTORY CHOICE & CONSTRAINTS

What is at stake?

Refractory requirements

CONTACT

No Glass Contamination
Campaign Life

Glass temperature and homogeneity

- Corrosion resistance
- Low glass defects
- Larger shape to reduce joints

- Thermal conductivity

SUPER-STRUCTURE Campaign Life
No Glass Contamination

Temperature homogeneity

Pull rate change and **quick response**

- Vapour corrosion resistance
- Thermo-mechanical behaviour: creeping
- Complex shape (design)

Thermal cycling, thermal shock resistance

REFRACTORY MATERIALS FAMILIES

Based on the **glass requirement** (size, temperature, quality, ...) **Geographic** choices / **habits** observed.

Perfectly fit requirements in most container glass production.

Address particular cases

GLASS CONTACT

Corrosion, Glass defects Refractory material choice

Metal line corrosion : Marangoni effect
 Temperature / Refractory composition / Flow rate

Joint corrosion
 Glass composition / Glass infiltration / Upwardrilling process

Temperature impact

- Highly temperature sensitive
- FC AZS recommended for T > 1350°C

• At temperature < 1200°C => fused and sintered have similar corrosion rate

GLASS CONTACT - CORROSION SYNTHESIS

		Sintered AZS ZA33	Sintered Alumina BPAL	FC AZS ER1681	FC Alumina Jargal M
Chemical analysis	ZrO ₂	10%	/	32%	/
	Al_2O_3	76%	93%	51%	95%
	SiO ₂	12%	6%	15%	0,8%
Physical properties	Apparent porosity	16%	14%	2%	3%
Corrosion Index	1250°C	Similar			
	1350°C	90	80	120	100

GLASS CONTACT – CAT SCRATCHES

Heterogeneous glassy band on glass surface (5 to 40 μm typical)

Main origin: glass contact refractory

GLASS CONTACT – CAT SCRATCHES

FC AZS ER1681

Interface layer:

- Dissolved corundum
- Residual ZrO₂ crystals

FC Alumina Jargal M

No crystals released.
Only enrichment in alumina

- Defects analysis allows to identify the material origin (Al/Zr ratio)
- High Alumina based refractories generates less defects

GLASS CONTACT – CAT SCRATCHES SYNTHESIS

		Sintered AZS ZA33	Sintered Alumina BPAL	FC AZS ER1681	FC Alumina Jargal M
Chemical analysis	ZrO ₂	10%	/	32%	/
	Al_2O_3	76%	93%	51%	95%
	SiO ₂	12%	6%	15%	0,8%
Physical properties	Apparent porosity	16%	14%	2%	3%
	Cat scratches risk	+	0	+	00

GLASS CONTACT – SUMMARY REFRACTORY CHOICE

Materials selection depends on **Temperature** (lifetime) and **glass quality** expectation

SUPERSTRUCTURE

Creep & Vapour corrosion Refractory material choice

SUPERSTUCTURE - INDUSTRIAL SITUATION

Vapor corrosion

Diffusion, interface layer formation

Spalling, dripping

Creeping

Block deformation, refractoriness

SUPERSTUCTURE - CREEP

	Silli	manite - Mullit	Sintered AZS		
	Arkal 60	Arkal 65	BP Mullite	Promold	Ziral
Al2O3 weight %	62	67	75	53	70
SiO2 weight%	34	29	24	16	10
ZrO2 weight %	/	/	/	28	19
Density (g/cm3)	2,50	2,60	2,70	3,25	3,15
Open Porosity %	17	15	15	11	17
Thermal Expansion (ppm/°C)	5,4	5,5	5,4	6,1	5
Thermal conductivity (W/mK)	2	1,7	1,8	2,7	2,0
Cold crushing (Mpa)	80	120	100	220	50
RUL @ 0.2 MPa	1540°C	1580°C	/ >1700°C	>1660°C	1650°C

• Mainly using Sillimanite – Mullite, compatible with complex and large shape

SUPERSTUCTURE - CREEP

Total Creep 1450°C, 100 hrs, 2 bars

- Mainly using Sillimanite Mullite, critical criteria: couple Temperature of use / Span
- Creep resistance increases with Al₂O₃ content and Mullite content

SUPERSTUCTURE - VAPOR CORROSION

Na₂SO₄ vapors test: 100 h / 1400°C

- AZS material for high corrosion area
 - Promold / Ziral : coloring feeder or extra white (high Na vapor)
 - (ZA33 : skimmer and glass contact)

SUPERSTUCTURE – SUMMARY REFRACTORY CHOICE

Mainly **Arkal : Thermo-mechanical** parameter (temperature of use / span) **Promold / Ziral** for **coloring feeder / thermal shock area**

SUPERSTRUCTURE

GLASS CONTACT

Optimized selection?

SUPERSTRUCTURE

GLASS CONTACT

Life Time (Temperature Span)
Localized corrosion

Glass Quality
Life Time (Temperature)

SUPERSTRUCTURE

GLASS CONTACT

Life Time (Temperature Span)
Localized corrosion

Glass Quality
Life Time (Temperature)

A large range of choice

- Sintered or Fused cast
- Sillimanite Mullite / Alumina / AZS

SUPERSTRUCTURE

GLASS CONTACT

Span)
Localized corrosion

Glass Quality
Life Time (Temperature)

A large range of choice

- Sintered or Fused cast
- Sillimanite Mullite / Alumina / AZS

- Specification (joints, size, aspect, ...)
- Reliability

THANK YOU SAINT GOBAIN SEFPRO

